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The B-mode polarization of the cosmic microwave background provides a unique window into tensor pertur-
bations from inflationary gravitational waves. Survey el ects complicate the estimation and description of the
power spectrum on the largest angular scales. The pixel-space likelihood yields parameter distributions with-
out the power spectrum as an intermediate step, but it does not have the large suite of tests available to power
spectral methods. Searches for primordial B-modes must rigorously reject and rule out contamination. Many
forms of contamination vary or are uncorrelated across epochs, frequencies, surveys, or other data treatment
subsets. The cross power and the power spectrum of the dierence of subset maps provide approaches to reject
and isolate excess variance. We develop an analogous joint pixel-space likelihood. Contamination not modeled
in the likelihood produces parameter-dependent bias and complicates the interpretation of the dilJlerence map.
We describe a null test that consistently weights the di [ lerence map. Excess variance should either be explicitly
modeled in the covariance or be removed through reprocessing the data.

I. INTRODUCTION

Systematic error control and rejection are central consid-
erations of cosmic microwave background (CMB) instrument
design and data analysis. The reionization feature of inflation-
ary gravitational waves [25, 26, 43] and improved constraints
on the optical depth [1[2] are of great interest, and require
andysis of CMB polarization on the widest angular scales of
the sky. These measurements are susceptible to contamina-
tion because they relate instrument response and foregrounds
across the largest angular and temporal separations.

A well-established approach to detect or reject systematics
splits the data into epochs, frequencies, surveys or other sub-
sets across which acontaminant varies or isuncorrelated. This
genera approach can take the form of a cross-spectral estima-
tor [51] or power spectrum null tests across a variety of dif-
ference maps. The maps can be split and subtracted to check
for particular instrumental eCects such as time constants (e.g.
[3]) or to get uncorrelated realizations of detector noise or at-
mospheric fluctuations (e.g., [7, 44]). Contamination that is
uncorrelated between the maps does not produce bias in the
cross power, but it does boost errors. Here, we consider ro-
bustness and bias in the pixel-space likelihood and develop an
approach analogous to the cross power or diLerence map null
test.

Anisotropy spectral analysis compresses map information
by exploiting the Gaussianity and statistical isotropy of the
CMB signal. A survey is limited to fractions of the sky by
its scan strategy and galactic contamination. Truncation has
two consequences for the power spectrum. The estimate C:
is the sum of quadratic products of normally distributed map
variations, making P(C-jx) (given map data vector x) non-
Gaussian unless there are sul]cient modes available to be in
the central limit. On a partia sky, the spherical harmonics for
intensity and polarization are an incomplete basis, which re-
sults in correlations between ™ [18, 24], and E- and B-mode

polarization mixing [5]. Polarization power spectra through
pseudo-C- [24, 36] and related quadratic methods have well-
established procedures for deriving the P(C-jx) [10, 16, 20].
Mangilli et al. [33] recently devel oped an implementation of a
complete probability distribution function for the cross power
spectrum on large scales, including the elects above.

An alternative approach resolves the challenges of spectra
estimation by determining the cosmological parameters di-
rectly from the map [13, 28, 35, 38, 52]. The pixel-space like-
lihood approach has several advantages. Cuts and variation in
coverage on a partial sky are included in the pixel covariance
model and do not require simulations or analytic treatment
of multipole correlation or polarization mixing. The likeli-
hood represents the complete information contained in maps
with Gaussian signal and noise, so it can achieve the lowest-
variance estimates of the parameters. It accommodates some
classes of foreground subtraction and self-consistently propa-
gates parameter errors [28, 38, 52]. The likelihood avoids the
need to represent a complete joint (non-Gaussian, correlated)
probability distribution of the C-’s for ° on angular scales
comparable to the survey size. Findly, the likelihood does
not require reference to fiducial model parameters. There are
well-established procedures for combining information from
pixel-space likelihoods of large scales and spectral analysis of
small scales[35, 38].

Drawing an anaogy to the power spectrum null test, we
can estimate cosmological parameters from the likelihood of
adi Cerence between two maps from subsets of the data. The
sky signal drops out in the diCerence, and only noise or vari-
able contamination remains. If there is no contamination, the
posterior distribution of cosmological parameters will be con-
sistent with data containing only detector noise. A null test
based on the likelihood of the dierence may fail to be infor-
mative when contamination does not match covariance in the
datamodel. In this case, excess variance produces parameter-
dependent bias through the el ective weighting of the contam-



inants in map space. In the dilerence map, thereis no signal,
and the contaminant is weighted di Cerently than in the sum.

We develop the joint likelihood analogy to the cross power
and null test and propose a reweighting method for dilJer-
ence maps. Reweighting gives a consistent interpretation of
bias from contamination in the sum and dilJerence. However,
excess variance (misspecification) also produces bias in the
width of the posterior parameter distribution. Contamination
must be treated either in a reanalysis of the data or as a new
term in the likelihood model.

The methods developed here apply to experiments and mis-
sions specificaly seeking the largest scales on the sky (Ad-
vanced ACTPal [21], CLASS[12], GroundBIRD [45], LSPE
[1], PIPER[31], and QUIJOTE [32]) and missions (CORE+ ',
Inflation Probe[30], LiteBIRD [34], and PIXIE [29]), but also
to the largest angular scales of surveys on smaller regions.

Section |1 reviews the likelihood approach and its relation
to spectral methods. Section |11 extends the likelihood to in-
clude the detector noise amplitude as a nuisance parameter.
This setting demonstrates properties of an incomplete covari-
ance model. Section IV reviews the cross-spectral estimator
and defines an analogous joint likelihood between data splits.
Section IV D describes the joint estimator with unknown con-
tamination covariance and develops a re-weighted dillerence
map null test. Section V summarizes the approach.

II. THELIKELIHOOD OF CMB MAPS

The Gaussian log-likelihood L 1 [1In P(xj(1) for map data
X given parameters [ is
2L = Tr[InC(0) + C(1) "D(x; )] @)
D(x; 1) 11 [x O (EIx (1T
where C and [ are the covariance and mean of the map vec-
tor x. In subsequent equations, we assume implicit parameter
dependence in the mean and covariance model or emphasize
dependence on individual model parameters.

The data vector for CMB polarization is x™ [ (x§; x[)), a
stack of Stokes Q and U maps. Stokes | intensity can aso be
added for complete TT, TE, EE, and BB two-point informa-
tion, but models and simul ations here use only Stokes Q and U
for simplicity. The maps used in the likelihoods are smoothed
at (kwhm = 157 and binned onto Ngge = 8 [15], encompassing
multipoles2 [J° [1 23. The mask region is defined by WMAP
P06 [35] and a declination limit of (773~ < [ < 27" avail-
able to wide-area surveys in the Atacama, such as Advanced
ACTPal [21] and CLASS [52] in the near term. Combined,
fay [10:5, showninFig. 1.

Thetotal covariance C(7) isthe sum of cosmological signa
and noise, C([1) = S§(I1)+ N([1). Thesignal covariance matrix
is defined from the powel)'< sp;o(ctrum C- (J) through [38]

S(C) = CXY(m)PXY; )
XY
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where our XY sum extends over only EE and BB to pre-
dict the Stokes Q and U covariance. PXY is described in
Tegmark & de Oliveira-Costa [48] and includes elects of
the Cpwnm = 15- smoothing and incomplete sky coverage.
For simplicity, we fix ICDM cosmological parameters [23]
throughout, but these could be jointly estimated in the likeli-
hood. Conclusions are not dependent on the base cosmology
at the currently available precision. The input data x are gen-
erated using synfast [15] plus a Gaussian random detector
noise and are consistent with the covariancein Eq. (2). In sub-
sequent sections, we add contamination to the maps to study
departures from the model.

For the purpose of demonstrating the B-mode constraint,
we use a reference survey with noiss RMS amplitude
10K arcmin. This noise level is typical of per-band sensi-
tivities of next-generation experiments in their prime CMB
science band (see e.g. Errard et a. [11] and Remazeilles et al.
[39] for summaries). Throughout, “detector noise” refers to
the variance in the map attributabl e to the detectors, which we
assume is uncorrel ated between map pixels.

Mask Region

FIG. 1. Mask used in the simulations here (Ngge = 8, giving fs, [
0:5), representative of the region accessible from the Atacama, as
well as masking the galaxy through WMAP's P06 map.

To simulate the distribution of experimental outcomes,
we find maximum likelihood (ML) parameters across Monte
Carlo redizations of data sets using the limited-memory
Broyden-Fletcher-Gol dfarb-Shanno algorithm [6, 53].

A. Reation to quadratic methods

The Newton-Raphson approach provides an analytic ex-
pression to iterate to find the maximum likelihood as [4, 9]

X h O il
Foaly (xx" oc) c'c,;c’ (3)

J
Fij [ %Tr (c''c,c'cy); (4)
where commas denote partial derivatives as Ci [ @=@;.
This expression gives the update to the parameter [ among the
parametersin [ = f[3;::g Equation(3) evaluates al covari-
ances and derivatives at the current iteration, and the resulting
[T gives the vector of changes (11 to iterate to the maximum



likelihood. Each iteration is driven by xx" [ C((]), the dif-
ference between the covariance model at that iteration and the
outer product of the data.

The covariance model C = [IC.; + N provides a simple
example of quadratic estimation of the covariance amplitude
(. Let thefirst guess be 1= 0. Then the first step toward the
maximum likelihood value of [Tis

_X'Qx0b
= m b— Tr(Q:N) (5)
Q =N""C N (6)

The quadratic term x" N 'C. ;N 'x inverse-noise weights the
map data (N""x) and dots across the covariance structure C. .
The “noise bias” b removes the contribution of noise N. The
denominator is a normalization that ensures that the expecta-
tion valueis

L _ Tr(QCo+Q N)ITr(QN) _
e T@c) "

The quadratic estimator with full C! weights is the
minimum-variance estimate of Gaussian covariance ampli-
tude parameters [47, 48]. Quadratic methods are commonly
used to estimate the anisotropy spectrum [8-10, 14, 19, 24,
40]. In this case, the parameters of the covariance model are
the C-’s themselves or band powers.

The quadratic approach to the maximum likelihood pro-
vides some analytic intuition about the behavior of the max-
imum likelihood (Sec. 11l A) and relation of the joint pixel-
space likelihood to the cross power (Sec.IVA and Ap-
pendix A).

(7)

B. Applicability of thelikelihood approach

The pixel-space likelihood is anayticaly simple at the
expense of being computationally intensive and structuraly
rigid. Evaluation of the likelihood requires the specification
and inverse of the Npix [ Npix covariance matrix of the maps,
which is numerically expensive. The pixel-space likelihood
has therefore seen greatest use in extracting information from
the largest scales in the survey, which span O(1000) pixels.
Note that the pixel-space analysisis generally useful for mod-
eling signal covariance on angular scales approaching the size
of the survey, not just at low-".

Given map data and a model, the likelihood is a self-
sulcient “black box” to determine the cosmological parame-
ters. Aslong asthe datamodel isaccurate, thelikelihood gives
the probability distribution of the parameters. Spectra meth-
ods provide greater freedom, such as choosing spatial weight-
ings, removing foregrounds in advance, and throwing out spa-
tial modes. Freedom also carries the responsibility of propa-
gating treatments to the final parameter distribution. Choices
in dataweighting and filtering other than C"" move away from
optimality. In contrast, the likelihood has only the fixed model
and does not diCerentiate between the signal structure covari-
ance and data weighting or filtering.

Covariancein the observed data that is neither modeled nor
isolated could produce a spurious detection of B-modes or

bias the true value. Some contaminant covariance structure
may be known accurately in advance. For example, the varia-
tion of detector noise across the map can be modeled from the
survey coverage and data cuts. However, the amplitude of that
noise may not be known from only laboratory measurements
or characterization of the time domain data. It is straightfor-
ward to include detector noise amplitude in the likelihood’s
covariance model and to fit it jointly with the cosmological
parameters. Fitting for the amplitude removes that source of
bias from the cosmological parameters and gives confidence
regions that reflect the full covariance.

1. BIASFROM EXCESSDETECTOR NOISE

A simple covariance model for CMB polarization data is
the sum of tensor and scalar cosmological contributionsand a
known noise, or [28, 52]

C(fr;sg = rSr + sSg + N; (8)

where the tensor-to-scalar ratio r multiplies the tensor covari-
ance structure S, the scalar amplitude s [ As=Aso multiplies
scalar covariance Ss, and N is fixed detector noise. St and Sg
are derived from the sum on EE and BB in Eq. (2) for fixed
[1CDM cosmological parameters [23].

Figure2 shows the Monte Carlo maximum likelihood dis-
tribution of r for an input r = 0:05 when both the modeled
noise and the true map noise are 10 'K arcmin, and also the
case when the detector noise is 30% higher (in map space)
than modeled in the fixed N term.

A simple extension to the covariance model can also fit for
the detector noise amplitude in the maps with the covariance
model, as[17]

C(fr;s; /g = rSr + sSg + (1=1p)°N: (9)

Figure2 shows that the distribution of r is correctly cen-
tered around the input r = 0:05 when the noise amplitude of
13K arcmin is jointly modeled with the cosmological signal
asin Eq. (9). It is dightly broader due to the higher level of
detector noise and expense of fitting (7.

It is possible to fit for cosmological amplitudes r and sin
parallel with noise [J because these have diCerent covariance
structures. In multipole space, s modulates the E-modes, r
impacts the E- and B-modes and detector noise contributes
to both but with a diCerent © dependence. When a contami-
nant has more overlap with the B-mode covariance structure,
it becomes harder to separate. In the worst case, the excess
covariance structure is identical to the signal and so isindis-
tinguishable.

Figure3 shows the 1] and 20 equivaent regions for the
distribution of biasin fyy_ that is produced by detector noise
30% higher than modeled. The bias has clear dependence on
the amplitude of true B-modes present in the map. The pa-
rameter dependence of the bias goes against intuition from
the power spectrum, where uncorrelated contributions in the
map are additive in C-. The behavior in Fig. 3 does not occur
for all types of covariance. For example, addingr = 0:1 B-
modes to a map with r = 0 B-mode amplitude will produce
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FIG. 2. The Monte Carlo distribution of the maximum likelihood
tensor-to-scalar ratio r for several scenarios of detector noise. Solid
curve: the distribution of r when both the map and the covari-
ance model have 10 LK arcmin noise, and a true input r = 0:05.
Dotted curve: the biased distribution of r when the map noise
is 13K arcmin while the likelihood's covariance model assumes
10 CK arcmin. Dashed curve: the distribution of r with a map noise
level of 13 CK arcmin, and the likelihood models the detector noise
amplitude jointly with the signal. Jointly fitting for the noise recov-
ers the input r value and represents the larger uncertainty in r from
13 [K arcmin noise vs. the 10 LK arcmin reference case.
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FIG. 3. The biasin fy from detector noise that is 30% higher than
modeled in the likelihood, as a function of the true B-mode r sig-
nal in the map. Light and dark gray regions are percentile regions
equivalent to 2[1 and 1] respectively, about the median (solid line).
The distribution is estimated as the Monte Carlo of the maximum
likelihood value of r over map realizations of both signal and detec-
tor noise. The dashed line showsbiasin r inferred from the quadratic
estimate of r, asthefirst step of the Newton-Raphson approach to the
maximum likelihood (Sec. Il A). The presence of true B-mode signal
modul ates the weighting of variance that contributes to the bias.

an estimate of ifi = 0:1. Adding a systematic with equivalent
r = 0:1 B-modes to a map with true signal r = 0:1 B-mode
amplitude produces an estimate of Ifi = 0:2. More generally,
for a systematic level of rgs, the measured Hi = rye + ryys,
independently of the level of rie.

A. Parameter dependence of the bias

There is no intuitive closed-form expression for the maxi-
mum likelihood, but the quadratic approach to the maximum
likelihood can give approximate expressions that explain the
basic behavior. The quadratic estimate for f in Eq. (8) is anal-
ogous to the covariance amplitude determination in Eq. (5),
and gives

F=(x'C'S;C'x 1b)=Tr(C'S;C"'Sr)  (10)
b= Tr(C"'S;C"'N); (11)

where matrices are as defined in Eq. (8). Taking the expecta-
tion value gives Tr (C'SrC 'hxxTi) in the numerator. Iden-
tify the total covariance

Ciot Jhxxi = rSr+ sSg+ N+ [J; (12)

where [ is some contamination covariance present in the data
but not the model. Thermal noise is represented by N in the
model, and is removed through subtraction of b. The remain-
ingincurred bias in Ffi dueto the un-modeled term [is

Hoiesi = Tr(C 'STC '0)=Tr(C'S$;IC 'Sy): (13)

In the numerator, C" "1 weighs the contamination [, and C
depends on the cosmological parameters r and s through co-
variance terms rSy + sSs. Hence the weighting of the con-
tamination is parameter dependent. Other parameters such as
h&iasi have a similar expression of some weighted overlap of
the signa covariance structure with the contamination. The
contamination biases all parameters that have structural over-
lap, and in away that depends on the value of the parameters.
Figure 3 shows the quadratic approximation to the bias as a
dashed line. It is lower than the median of maximum likeli-
hood realizations but captures much of the e_ect. Recall that
the quadratic expression is only the first step of the Newton-
Raphson approach to the maximum likelihood.

To get additional analytic intuition, Appendix B derives
Hpiasi in terms of the signal and contaminant covariance
eigenvalues in the case where the contaminant is a multiplier
times the identity matrix, (1 = [21. Then the bias becomes a
simpleratio

W)™

where w(r) is the weight per signal eigenmode (given in Ap-
pendix B), and [Tis the vector of signal eigenvalues. Figure4
shows the terms of w(r)" [ for each mode, as a function of r,
and is SS + N) per mode. For low r, there are fewer signal-
dominated modes. The r-dependence of the weight gives r-
dependence to the bias. If the contaminant has the same form
as the B-mode, then the numerator becomes w(r)" [} and the
biasisindependent of any truer in the map.

The quadratic estimator in Eq. (5) has additiona flexibility
that is not available in the likelihood because it separates the
covariance structure of the signal from the covariance struc-
ture of the weights. That is, in the quadratic form

il = U (14)

N xT¢ e 6 x; (15)
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FIG. 4. SHS + N) weight per eigenmode for three values of tensor
amplitude: r = 0:01 (solid curve), r = 0:1 (dashed curve), andr = 1
(dotted curve). The parameter dependence of the weight produces
parameter dependence in the bias from contamination.

6’1 and C.- do not need to originate from the same parent
C. In the likelihood, this choice is fixed for both. Diller-
ent choices of weights alect the optimality of the estimator
and the structure of parameter correlations. In the pseudo-C-
approach to spectral estimation, the quadratic combination of
data can be weighted by some N (hit map) or other apodiza-
tion W. In either case, the weighting does not depend on the
parameters.

IV. LIKELIHOODS ACROSSDATA SPLITS

Many sources of contamination vary or become uncorre-
lated across subsets of data from diCerent epochs, frequen-
cies, surveys, or data treatments. The cross power estimator
[51] extends the quadratic estimator in Eq. (5) by forming the
quadratic product across subsets A and B of the data as

C / xAN.'S: Ng'xg: (16)

The expectation value FC:i / Tr(N,'S: Ng'hxgx}i) contains
xBxTA, which averages to zero for any variance terms that are
not common to both A and B. (Variance not common be-
tween A and B increases the variance of the estimator.) This
approach has recently been extended to anaysis of variance
when few modes are available in a survey volume [33].

The diCerence of maps across a data split, xa [ xg, will re-
move any astronomical signal common to both maps. The
power spectrum of the diCerence map tests for any excess
variance. For example, the analysis of time-domain data must
account or compensate for the detector response time con-
stants. Otherwise, time constants can produce a residual vari-
ance in the diCerence between maps of left- and right-going
scans. Large suites of such null tests support the ultimate pa-
rameter determination by ruling out sources of contamination.
This approach has been applied extensively to spectra anal-
ysis and, to a much more limited degree, pixel-space likeli-
hoods [38].

A. Thejoint likelihood

The pixel-space likelihood analogy to the cross power isthe
joint likelihood of the maps A and B in the data split. Model
thejoint likelihood across the data split between A and B, with
X" = (Xy Xg)as

_ SO *NaSO)
= TSy SN o (D

where S([7) isin common to both A and B. Recall that xa is
still astack of the Stokes Q and U maps, so the combined data
vector (x} xg) isthe stack of four maps and the covariance is
aso naturally 4 (14 blocks for correlations of Stokes Q and U
across A and B. The noise covariance can also be extended to
accept parameters such as the [ amplitude in Sec. I11.

A likelihood model for that data that uses Eq. (17) extracts
parameter information from A [J B (cross) but also A [J A and
B 1 B (auto). This can be seen in the form of the quadratic
estimator x"C"'C, C""x, where both C! and C, have o -
and on-diagonal block terms, so the inner product with x™ =
(xh xg) mixes both A (/B and A Aor B[] B information.
A likelihood that uses the covariance model of Eq.(17) will
have sensitivity to informationin A 0 A, and so does not have
the same immunity to uncorrelated noise as the cross power in
Eq. (16).

To reach a closer analog to the cross power, take a covari-
ance model which has a duplicate set of nuisance parameters
on the diagond as

_ S(0)+ §(p)+ N S(0) g
c= SO) )+ +Ng - (18

Adding S(Tp) to the diagonal and marginalizing over [, &f-
fectively sweeps the rug out from under parameter constraints
on [ coming from A (1A and B [ B. Appendix A relates
Eq. (18) to the cross quadratic product Xy N,'C. Ng'xg (with
no noise bias to remove) asthefirst step of aNewton-Raphson
iteration starting from a noise-only covariance.

The approach in Eq.(18) resembles mode avoidance or
cleaning strategies. These are commonly implemented by
fitting and subtracting mode functions. Severa authors [41,
42, 46, 49] consider this class of avoidance and argue that
the following three are equivalent: (1) least-squared fitting
and subtracting modes in the mean model, (2) marginalizing
over the amplitude of nuisance modesin the mean model, and
(3) taking a multiplier of the covariance structure of the con-
taminated modes to infinity. In the present case, rather than
marginalizing over the bias nuisance variables 1y, another
approach that suggests itself would be to set the amplitude
of these on-diagona variance terms to infinity through [y,
This limit throws away dependence on the nuisance parame-
ters, and so halves the number of free parameters to estimate
through the likelihood. Taking on-diagonal signal variance to
infinity resultsin a quadratic estimator that uses only informa-
tion across the data split, asintended. However, it aso results
inaC"" weight applied to each map with infinite variance in
the signal modes; e.g., it aso eliminates the signal. Rather
than marginalize over nuisance parameters in the mean, the



likelihood using the covariance modd in Eq. (18) marginal-
izes over nuisance parameters in the covariance. Taylor &
Kitching [46] give analytic expressions for marginalization
over covariance parameters. These can be used to simplify
computation in ahigh-dimensionality parameter space, but are
not needed for the simple, few-parameter models considered
here.

B. Thesum-di_erencelikelihood

Rotating to a basis of sum and dierence maps, (Xs; Xq) =
(XK + x%; X} (L) simplifies the joint covariance in Eq. (18).
Take the detector noise amplitude to be identical between
splits A and B for simplicity (this can be arranged by split-
ting complementary sets of the data with common integration
depth). The resulting likelihood separates as the product of
sum and di Cerence likelihoods

P(xj"1; Tp) = Ps(Xsj[1; [Tp)Pa(Xajl Tb) (19
Ps(xg[); Tp) [ N(0;45(11) + 28(1p) + 2N)
Pa(XqjTp) [ N(0; 25(Tp) + 2N):

The factors of 2 and 4 are a by-product of taking the X} + X§
combination rather than 1=2((x}, + x%). The signal in common
to both maps appears as 45([1) because it adds coherently be-
tween the two maps, as (2)?, and the bias of uncorrelated
contamination appears in both the sum and the diCerence as
28(p) becauseit isthe addition of two uncorrelated variances
S(Op) + S(Tp) in each map.

An interpretation of thejoint sum-di(likelihood of Eq. (19)
isthat Ps constrains the parameters plus bias, while the dier-
ence Py constrains only bias from modulated contamination.

C. Sum-dillerencelikelihood: B-mode contamination

Following Sec.lll, take a simple model where S([1) =
FreST + SrueSs. Again St and Ss are the covariance struc-
ture of the tensor and scalar modes in the Stokes Q and U
maps. The new parameters in the bias space are §([1,) =
MbiasST + ShiasSs. Figure5 shows the sum and dierence like-
lihoods for r for a simulation with ry.e = 0:05, detector noise
of 10 CK arcmin in each map, and contamination at the level
of rpiss = 0:1in uncorrel ated realizations added to both maps.
The sum map can only constrain 2rye + rpigs SO it is a degen-
erate band from upper left to lower right. The diCerence map
can only constrain rpizs With no dependence on rye, SO it ap-
pears as a horizontal band. The product of the two likelihoods
recovers both the input ry,e = 0:05 and the contamination
level. The factor of two in 2ryye + ryias is €ectively anormal-
ization for the bias amplitude under the assumption that the
source of biasis uncorrelated between the split maps.

Marginalizing over rpiss in thejoint likelihood gives an esti-
mate of ry e With errors self-consistently inflated to reflect the
fact that some of the constraining power of the map is used to
estimate bias. An analogous power-spectral null test uses the
diCeerence of maps to rule out bias parameters. If the power

spectrum of the diCerence map is consistent with zero, a par-
ticular source of contamination can be ruled out. In atypica
use of the null test, once a source of varianceisruled out, it is
taken to beidentically zero. In contrast, in thejoint likelihood,
Egs. (19) and (18), uncertainty in the bias parameter is folded
into the final estimate fie.

0.15
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FIG. 5. The likelihood of rpiss and rye from the sum and dilCerence
of maps across a split in the data. Here ryye = 0:05 isin common
between the maps, and each map has an independent realization of
contaminating B-modes at the level i, = 0:1. This represents a sce-
nario where there is time-varying contamination with structure indis-
tinguishable from the B-modes. Solid lines: The regions of 68% and
95% probability enclosed (107, 2[1 equivalent) in the likelihood of the
sum map. It traces a degeneracy between interpretation of the data
as al true B-mode signal or al bias. Dashed lines: The analogous
regions for the likelihood of the dierence map. This likelihood iso-
lates residua variance at the level rys = 0:1. Thejoint likelihood
of sum and dierence maps determines both the bias and the target
r amplitude with self-consistent errors. Both posterior distributions
are from a single realization of data, so the maximum likelihood is
not centered on the input parameters.

When the likelihood model includes all covariance terms,
the tensor to scalar ratio can be recovered without bias and
with correct confidence intervals. When the contaminant
covariance dilers in structure from terms in the covariance
model, the cross likelihood fails and can give biased results
due to the weighting elect in Sec. 11 A.

D. Reweighting for dilJerence map null tests

Section |11 provides a scenario where the data have some
covariance that is not explained by the structure in the likeli-
hood model. In the case of a single map, Sec.Ill A showed
how a parameter [is biased when its structure C.;, overlaps
with contamination [ through Tr(C"'C..C"'1). Further, the
bias depends on parameters through the C(11) ' weight. Inthe
sum-di Cerence formalism, the di“erence map has no signal
by construction, so the contamination is weighted diCeerently
than in the sum map likelihood.



Mis-specification of the covariance model resultsin signifi-
cantly diCJerent parameter biases in the likelihoods of the sum
and dilClerence maps. In the diCerence map, there is no cos-
mological B-mode signal by construction, so the pixel-space
covariance is equivalent to the case of r = 0. Figure3 shows
the bias produced by a 30% excess of therma noise as afunc-
tion of r assumed in the covariance. Atr = 0, thelikelihood of
the di Cerence map reports negligible bias produced by the ex-
cess thermal noise. In contrast, if the datahave atruer = 0:1,
the 30% excess thermal noise will produce abiasof [r = 0:06
on average, with fluctuations at the level of [, = 0:05. The
parameters inferred from the likelihood of the di Cerence map
no longer provide useful information about the bias of param-
eters in the sum map, and may lead to false confidence in the
andysis.

For the likelihood of the diTerence to constitute a null test,
it must weigh the contamination consistently with the sum.
An approach to consistent weighting is to add a signal re-
aization xgg to the dillerence map x4 and find the Monte
Carlo average of the parameters over signa redlizations (each
realization will have some signal variance). Any deviation
from the input parameters could be attributed to contami-
nation in the diClerence map. In this case, the data matrix
hDi = h(Xgg + Xq)(Xsg + Xa)'i = XaX[ + 45(L)), where H is
the expectation over signal redlizations. (In the sum map, two
coherent copies of the signal are added, giving afactor of 4in
variance.) Rather than Monte Carlo, we take the expectation
value of the likelihood over added signal, giving the model

2Lg=TrlInCy + ;" (xax] +4S(0))] (20)
Cq = 28(11p) + 2N + 48(10):

The factor of 2 in the bias covariance 2S([1,) represents the
assumption that the excess variance producing the systematic
is not correlated across the di Cerence of maps.

The role of 45([]) in the covariance model is clear as a
reweighting, but the 4S(17) term in the data matrix also plays
an important role in the likelihood. In the Newton-Raphson
approach to maximum likelihood, each iteration is based on
the di_erence between the data matrix (outer product of the
data) and the covariance model,

0= DOC(D) (21)
= [xaX§ + 4S(0)] T[2(0p) + 2N +4S(7)]  (22)
= XgxJ [125(Tp) [12N: (23)

The maximum likelihood therefore fits the residua variance
in the dilerence map to the signa bias model, accounting
for thermal noise. Recall that each Newton-Raphson step in
Eq. (3) is weighted by a C", which also contains 4S(11) and
weights [ consistently with the sum map.

The reweighted likelihood of the di“erence map should be
interpreted as Py(Tpj), the distribution of bias parameters
evaluated in a map where signal variance is fixed at [1. It
should not be interpreted as the joint likelihood Py([1y; 7).

The sum and dilerence likelihoods can be sampled and
combined through the following process:
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1. Use the map sum xp + Xg to constrain 2ryye + rpizs,
marginalized over all other parameters. This gives adi-
agonal band of degeneracy in the riye-rias plane.

2. Usethedierence map xa[1xg in there-weighted likeli-
hood Eq. (20) (rire fixed) to estimate the distribution of
Ibias, Marginalized over al other parameters. This gives
aslice of the probability of rpiss for agiven true level of
Signal ltrues P(rbiasjrtrue)-

3. Repeat the dilerence analysis for any other null test
combinations, giving contours in the ryye-ryias plane.

0.15}

) N\ :
0.05 0.10 0.15

True r correlated across maps

FIG. 6. Same layout as Fig.5, except that instead of adding vari-
ance in the form of B-modes (which are in the likelihood covariance
model), this simulation has detector noise 30% higher than mod-
eled and is not explained by any free term of the covariance. Mis-
specification produces a parameter-dependent bias. Here we force
the likelihood of the dierence map to weight consistently with the
covariancein the sum map likelihood. Without reweighting, the like-
lihood of the dierence map gives rpios < 0:004 at 95% confidence.

Figure6 applies this process to maps with ry,e = 0:05
and detector noise that is 30% higher than is modeled in the
likelihood. Without reweighting, the likelihood of the diler-
ence map reports rpiss < 0:004 at 95%, independently of ryqe.
Reweighting the likelihood resultsin P(rpiajrirue) that depends
ON ryye, analogously to Fig. 3.

WMAP [22] and Planck [38] find the posterior distribution
of [Jfrom dilCerence maps, but do not describe added signal
covariance in the model. This covariance is required to con-
sistently weight contamination in the null analysis.

To constitute a useful null test, the likelihood of the diler-
ence map must also give an informative confidence interval.
Appendix C describes the curvature of the posterior parame-
ter distribution. When there is no excess variance, the curva-
ture is the usual Fisher matrix Tr[C"'C,,C"C;]. The width
coincides with the distribution of the cosmological signal and
noise at fixed contamination. Thewidth is analogousto astan-
dard null test, where the errors in the diCerence map power
spectrum do not account for any contamination.



The width of the likelihood is erroneous when the dilJer-
ence map has an excess variance that is not described by free
parameters in the likelihood model. Contamination must be
treated either in areprocessing of the data or be modeled self-
consistently in the likelihood. Examples here could include a
fit for noise amplitude in the map or deprojection [3], where
instrumental systematics of known structure produce correla-
tions between temperature and polarization maps. Extensions
to the likelihood must balance adequacy (of describing non-
cosmologica variance) and simplicity. The likelihood ratio
and related tests can be used to assess the candidate exten-
sions.

V. SUMMARY

Instrumenta systematics, residual foregrounds, and other
excess variance produce biasin cosmological parameters. Ex-
periments to detect inflationary gravitational waves must use
a battery of tests to rule out biases that could lead to a false
detection. Determination of cosmological parameters directly
from pixel-space likelihood has shown promise as a method
to self-consistently handle foregrounds and survey depth vari-
ations or masks, especialy on the largest scalesin the survey.
This approach bypasses cal cul ation of the band powers, which
have had a vigorous history of tests for systematics. We have
developed some pixel-space likelihood analogies to the cross
power, noise modeling, and the di Clerence map null test.

If excess variance modulates with time or instrumental
setup, a diCerence map can be interpreted using a likelihood
for aparticular source of parameter bias. The two dimensional
posterior distribution of a parameter and its bias is a conve-
nient diagnostic. We show examples of this parameter bias
plane for the tensor to scalar ratio r when the excess variance
is parameterized in the likelihood, and where it is not (mis-
specification).

The parametric nature of the likelihood requires additional
care. Bias in the pixel-space likelihood is signal-dependent
because the map weights contain signal covariance. Signal
dependence of the weight produces parameter distributions
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that are not consistent between the sum and dierence maps.
We propose a procedure for consistently weighting contami-
nation. The method accomplishesthe role of anull test: under
the same assumptions as the sum map analysis, is there evi-
dence for parameter bias caused by modulated contamination
in the di “erence?

We recommend an iterative approach. In afirst pass, the
likelihood models al cosmological parameters and imper-
fectly known instrumental terms (e.g. detector noise). If a
weighted di Cerence null test fails, that information should be
used either to construct a model of excess variance or to re-
process the data in a way that eliminates the systematic e’Ject.
If aleft-right scan diCerence fails, compensation of time con-
stants should be reassessed until that test passes. Temperature-
to-polarization leakage results in a covariance matrix between
the temperature and the polarization. In parallel with cosmo-
logical parameters, the pixel-space likelihood should include
any contamination which has a well-defined model.

The likelihood of the diCerence map provides a parametric
test for mis-specification of the covariance model by isolat-
ing components that vary across data subsets. A more gen-
eral problem is assessing whether thereis variance in the data,
time-varying or not, that is not explained well by the model
and could produce spurious B-modes. A parametric model
can be tested against less parametric models that are sensitive
to a wider range of variance structure. In the case of CMB
polarization, the power spectrum is aready an excellent ex-
ampl e of this approach and has been used by WMAP [22] and
Planck [38] to corroborate likelihood results on large scales.
The power spectrum exposes statistically isotropic variance
with *-dependence di Cerent from the signal. At the next level,
tests for isotropy [27, 37] are sensitive to residua galactic
foregrounds.
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Appendix A: Relation of thejoint likelihood and cross power approaches

For a model with only B-modes, 1 = fr; r,g the joint covariance across subseason maps A and B is

C= (r+rb)ST+NA

rSr

rSr
(r+rp)St+ Ng (AT)

As afirst iteration of the Newton-Raphson (NR) approach in Eq. (3), take the case wherer = rp, = 0. In this case,
I

0

F= = DTN+ Ng)SHNG + Ng')Srl 0= S THINGSINISr + Ng'SrNg'sr) (A2)
and theinitial iteration forr is h .
I I
Tr (xx" IC)Q :
T = 7 aict 2% (A3)
2Tr(N,'SrNg'sr) Sr 0

where we have identified the form of an optimal quadratic estimator Q.



The noise bias term

" ! 1#
0 S N o
Tr[CQ] = Tr A =0 A4
The signal estimator term
Tr[xx"Q] = 2xAN,'STNg'xz: (A5)

If we take the estimator f to be thisfirst NR iteration, it has the form of a cross power
XANL'STNg'xg

T (N SN S (A9

f=

Appendix B: Parameter dependence of the bias

Section 111 A argues that the bias in r from contamination covariance [ is tryisi = Tr(C 'SrC '0)=Tr(C 'S;C 'S;). As
atoy model to understand the behavior analytically, take the contaminant [/ = (121 and noise N = [121. This is equivalent to
having uniform detector noise in excess of what is predicted. Expand the B-mode signal covariancerSr = rUNUT. Theinverse
covariance according to the Woodbury inverseis

CT=(Sr+N)"=N"ON"Ur 'O+ UTNTU) TUTN (B1)
= O2UM O 02 0 + 0 21) U (B2)

Takingr! 0,C'= 121, Thisisjust the uniform detector noise weight. The quadratic estimator part of the bias trace is
CsC = UM OO O+ D) O OO o T+ O 1) UT = ogtuwuT (B3)

where we have identified the weighting term W as the combination of factors between U and UT. The weight is implemented
as a vector multiplication as long as the contaminant is diagonalized by the same vectors U as the signal, which in this case is
possible because we chose contaminant [ = [21. Here,

bias!

Tr(UWUT21) LW(r)T1
= T - b T
Tr(UWUTUCDUT) w(r)' o
where we have used the cyclic property of the trace, used the orthonormality of the eigenvectors, and let [1and w be the diagonals
of the signal eigenvalues (1 and weight W. In contrast, if the contaminant has the same covariance structure as the signal,
Foias = C2W(r)T C2w(r)T L= (12 with no dependence on r. Each term of the product w(r)" Listhe 1) S(S + N) of the signal mode.

Modes in the map that contribute less signal to noise are downweighted. The denominator Tr(C"'S;C"'Sr) / w(r)TDis the
elective number of independent modes of information about r in the map, and it is al'so equal to the Fisher matrix.

(B4)

Appendix C: Curvature of thelikelihood under mis-specification

The general curvature of the log-likelihood is [50]
2L =Tr[0C'c;c'c;+Cc'cy; + ¢ (c;c'c; + C;c'cy)Cc D (C1)
ncc;c'pb;+ C;Cc'Dy) Cc(Cy;C D 1 Dy))I: (C2)
where D = (x [ C)(x L' [)T. In the case that the covariance model C is the same as the covariance of the datahDi = C, and there
is no parameter dependence in the mean, one recovers the usual Fisher matrix (expectation of the log-curvature)

Fij = %Tr(c“c;ic*c;,-): (C3)

With some unknown contamination X, the expectation value of D is C + xx!. Generally the maximum-likelihood estimate
of the covariance is biased by the presence of this contamination, or Cpiaseq. Neglecting parameter dependence of the mean (D)
and second derivatives of the covariance (applicable for the models here with rSt) gives

2h i = Tr[ C'c;Cc'c; + C'(c;c'e, + C;C'C,)C ThDi]: (C4)
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Thefirst term isthe ordinary Fisher matrix, but we must replaceC™' | C_l,. The second term contains C 'hDi | C,,l4(C+
XcX?). The width of the likelihood (as explored in MCMC) no longer has a clear interpretation because the model in the
likelihood Chiaseg does not coincide with (Cyye + XcX{ ).
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